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Summary /
- (1) ” I
A general treatise of cascaded discontinuities is // ! b |
given and applied to fin-line circuits. A transmis- i \T \
sion matrix representation is superior to a scat- “a” | \ \
tering matrix representation as far as cpu-time is \ | >
concerned. The scattering matrix is, however, ad- \
vantageous if the line length between any two junc- \‘;A4)
tions is large. Numerical examples are given for |
illustration. mixed type |
ZO _—nZ

INTRODUCTION
Fin-line circuits usually consist of a large number Fig. 1 Different types of waveguide discontinuities
of line sections separated by abrupt junctions. In . _
the case of multi-section bandpass filters e.g., relate the complex amplitude vgctors a and b of
the dimensions of the slot pattern must be altered the incident modes to a  and b of the scattered
many times until the required response curve is well modes for the case of a boundary reduction-type
approximated. Hence saving cpu-time is an important problem by
factor in system design. We will compare transmis- Iy (a++a_)=A(b++b-), by (b+—b_)=At(a+—a_). (1)
sion and scattering matrix representations of cas- == =" == - =Q - - = - 7
caded junctions and develop some guidelines for the Here superscripts + or - refer to propagation in
design of a complex fin-line circuit. The results +z or -z-direction, respectively. Furthermore, the
are, however, general and can be applied to any number of modes in guides "a" and "b" has been li-
other circuit technology. mited to.N and M, respectively. Then A_ is an N°N

diagonal matrix, A_ an M*M diagonal matrix, and A

Most of the waveguide discontinuities have either an N°M matrix whoSé elements can be derived by ge-
the forms shown in Fig. l: a boundary reduction neralizing the analysis given in /1/.
-type /1/, a boundary enlargement-type /1/, and a
mixed-type discontinuity. Following /1/ but allowing Boundary enlargement discontinuities are described
for an arbitrary number of incident modes one can by relations which are similar to egs. (1) with

slightly different matrix elements. For disconti-
nuities of the mixed type we proceed as sketched in
Fig. 2: Such junction is treated as two junctions
in cascade, the first "a"-"c" being of the boundary
reduction, the second "c"-"b" being of the boundary
enlargement type. Line length 1 of "c" is then set
to zero. The principle of conservation of complex
power (see e.g. /2/) is used for checking the ac-
curacy of the so-obtained results.

boundary reduction type

SCATTERING AND TRANSMISSION MATRIX REPRESENTATIONS

/7 From an inspection of egs. (1) one recognizes that
/ if the number of variables N#ZM it is impossible to
‘m “b / express §+, a  in terms of QJ', b. The most suitable
| choice of dependent and independent variables is to
\ express a , b’ in terms of a", b". Each of these
! \ pairs represents (N+«M) variables. This gives rise
to the scattering matrix representation

|
boundary enlargement typel
Z0 —» 2
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Fig. 2 Equivalence between mixed type discontinuity
and two cascaded normal discontinuities
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where the individual sub-matrices can be calculated
from A_, é@' and A. The corresponding procedure
involves at least I matrix inversion and 5 matrix
multiplications.

The situation is much simpler for an equal number
of modes in guides "a" and "b": N=M. One can then
relate the corresponding modes of each waveguide by
the transmission matrix according to

a 8] v b

= ¢ (3)
u b

-]
It <<

where U and V are calculated from A , A_, A by only
1 matrix inversion. Another advantage &f this re-
presentation is the easy handling of mixed-type
discontinuities, where the resultant sub-matrices

U and V are calculated from multiplying the indi-
vidual sub-matrices.

In the case of cascaded discontinuities there are 2
approaches: The first is to process the individual
scattering matrices (see e.g. /3/). This requires
at least 1 matrix inversion and 10 matrix multipli-
cations if two discontinuities are to be treated.
The second is to process the individual transmissim
matrices for N=M. This requires 8 matrix multipli-
cations and no inversion (see Fig. 3).
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Fig. 3 Transmission matrix representation of cas-
caded discontinuities

For discontinuities between waveguides having the
same housing as e.g. fin-lines and microstrip lines,
it has already been shown /3/, /4/ that there is m
need to take different numbers of modes in the in-
dividual waveguidesinto account. Hence the trans-
mission matrix representation for cascaded dis-
continuities is by far the fastest one as far as
computer time is concerned. Due to the finite thick-
ness of the metal fins, three different junctions
are imaginable (Fig. 4): a decreasing (increasing)
slot width corresponds to the boundary reduction
(enlargement) case, while a shifted slot axis cor-
responds to the mixed-type problem. All these dis-
continuities should preferably be described by the

transmission matrix.
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Fig. 4 Different fin-line discontinuities

THE OVERFLOW PROBLEM

Cascaded discontinuities are always separated by
uniferm line sections, which may give rise to com-
putational problems. The elements of their scat-
tering matrix are composed of terms zi=exp(—Yil),

while the transmission matrix contains z, as well
as 1/z,. For evanescent modes, the lattel is usual-
ly a very large number which may lead to an over-
flow in particular if multiplications have to be
performed. In case of the transmission matrix re-~
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presentation overflow might occur if the sum of all
separating line sections exceeds the attenuation
distance of the highest-order mode. (This distance
is defined as 1/y_,Y. being the corresponding at-
tenuation constan%.)lln this case one should col-
lect the cascaded discontinuities in groups which
are separated by line sections which are long in
the above sense, while the line sections within
each group are small. Each group is then treated
by the transmission matrix representation, while
the groups are cascaded within the scheme of scat-
tering matrices.

NUMERICAL RESULTS

The validity of our approach of analyzing mixed-type
fin-line discontinuities has been checked by com-
puting the complex power just before and just be-
hind the junction. The fields on either side have
been expanded into 5, 10, or 15 modes. The results
in Table 1 show, that the complex power is conser-
ved irrespective of the number of modes.

The cpu-~time of both a transmission and a scat-
tering matrix representation of cascaded disconti-
nuities is shown in Table 2. From this point of view,
the former method is preferable. - The influence of
the number of modes is finally illustrated in Fig.

5 showing Sll versus frequency of two junctions in

cascade. From this a 10-mode expansion proves to be
sufficient.

omplex power

number of modes |[just before

the junction

just behind
the junction

5 0.9935+j0.0023 0.9935+30.0023
10 0.9935+30.0021 0.9935+j0.0021
15 0.9935+30.0025 0.9935+30.0025

Table 1: Complex power (in arbitrary units just be-
fore and just behind a mixed-type fin-l1ine junction

cpu-time in seconds

number of junc- |{T-matrix for- S-matrix for-
tions mulation mulation
1 20 46
2 65 106
3 109 171
4 150 246
5 183 310
Table 2: Comparison between cpu-time needed for T-

and S-matrix formulations
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